2021

(1st Semester)

ECONOMICS

(Honours)

Paper No.: ECO-102

(New Course)

(Quantitative Techniques-I)

Full Marks: 70
Pass Marks: 45%

attrobute to red Time: 3 hours

The figures in the margin indicate full marks for the questions

Discuss the I—TINU functions and their

1. (a) Given
$$A = \{a, b\}, B = \{4, 6\}$$
 and $C = \{5, 6\}$. Find—

(i)
$$A \times (B \cap C)$$
;

(ii)
$$(A \times B) \cap (A \times C)$$
.

Verify whether

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
 3+3=6

DalEco-102 [m]

(b) If
U = {j, k, l, m, n}, X = {j, k, m} and Y = {k, m, n}
show that (X ∩ Y)' = X' ∪ Y'.
(c) If U = {1, 2, 3, 4, 5, 6, 7, 8}, P = {4, 5, 6}
and Q = {5, 6, 8}, show that
(P ∪ Q)' = P' ∩ Q'

OR

- 2. (a) Each student in a class of 40 plays at least one indoor game chess, carom and scrabble. 18 play chess, 20 play scrabble and 27 play carom. 7 play chess and scrabble, 12 play scrabble and carom and 4 play chess, carom and scrabble. Find the number of students who play—
 - (i) chess and carom;
 - (ii) chess, carom but not scrabble. 8
 - (b) Discuss the types of functions and their applications in economics.

UNIT-II

- 3. (a) Add 3+3i and -4+i and subtract 3+3i from -1+4i graphically. 3+3=6
 - (b) Discuss the axiomatic properties of real numbers.

8

177

OR

- 4. (a) Find the equation of a straight line that has y-intercept 4 and is perpendicular to straight line joining (2, -3) and (4, 2).
 - (b) Find the coordinates of the centre and radius of the circle whose equation is

$$3x^2 + 3y^2 - 6x + 9y - 4 = 0$$

(c) Find the equation of a circle which passes through three points (0, 1), (5, 1) and (2, -3).

UNIT—III

5. (a) Find $\frac{dy}{dx}$ of the following: 4+3+3=10

(i)
$$x^2 + y^2 + 2x + 2y - 2 = 0$$

(ii)
$$\frac{x^2+5}{x^2+x}$$

(iii)
$$(x+2)(3x+2)$$

(b) Find the maximum and minimum values of the following function:

$$Y = 3x^4 - 10x^3 + 6x^2 + 5$$

OR

- 6. (a) Find E_d , if the demand function is $x = 25 4p + p^2$, where x is the demand for commodity at price p and find out the point elasticity at price level p = 8, p = 4 and p = 5.
 - (b) Discuss the relationship between average and marginal cost curves through differentiation.
 - (c) A firm has the following total cost and demand functions:

$$C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50$$
 and $Q = 100 - p$

Find the profit maximising level of output; also find profit at this level of output.

UNIT-IV

- 7. Integrate the following:
 - (a) $\int (x^3 4x^2 + x) dx$

$$(b) \quad \int \frac{x^4 - 8}{x} \, dx$$

$$(c) \int 2x(x^2+1) dx$$

(d)
$$\int \left(\frac{1}{x^2} + \frac{4}{x\sqrt{x}} + 2\right) dx$$

22L/6

(Continued)

2+4+4+4=14

5

4

Ministra legeneral to no OR a light swift and

- 8. (a) If the demand function is $p = 85-4x-x^2$, what will be the consumer's surplus, if—
 - (i) $x_0 = 5$; (ii) $p_0 = 64$?
 - (b) Find the producer's surplus when $p_d = 3x^2 20x + 5, p_s = 15 + 9x$

UNIT-V

9. (a) Solve the following equation through matrix inversion:

 $A = \begin{bmatrix} 3x - 2y + 3z = 8 \\ 2x + y - z = 1 \\ 4x - 3y + 2z = 4 \end{bmatrix}$

(b) Discuss the properties of determinants. 6

OR

10. (a) Compute (i) 2A - 3B and (ii) ABC for the following matrices: 2+2=4

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

(b) Write short notes on (i) diagonal matrix and (ii) symmetric matrix with examples.

2+2=4

6

(c) Solve the following set of equations by Cramer's rule method:

$$2x-3y+4z=8$$

$$3x + 4y - 5z = -4$$

$$4x - 5y + 6z = -12$$

* * *