Ba/EC2.CC4

2023

(CBCS)

(2nd Semester)

ECONOMICS

(Honours)

Paper No. : EC2.CC4

(Mathematical Methods for Economics-II)

Full Marks : 75 Pass Marks : 40%

Time : 3 hours

The figures in the margin indicate full marks for the questions

Unit—I

- **1.** (a) If $A = \begin{bmatrix} x & -2 & y \\ 4 & z & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & x & z \\ x & y & 2 \end{bmatrix}$, find A - 2(B).
 - (b) Solve the coefficient matrix for the systems

$$x-2y+3z = 1$$

$$3x-y+4z = 3$$

$$2x+y-2z = -1$$

L23/480

(Turn Over)

5

10

OR

 State the properties of determinants with example.
 15

UNIT-II

- **3.** Find the partial derivatives of the following : 4+4+4+3=15
 - $(a) \quad U = x^2 y + x y^2$
 - (b) $U = x^2 y^2 + x^5 + y^5$
 - (c) $U = e^{x^2 + y^3}$
 - $(d) \quad U = 4x^2$

OR

 What is total differentiation? Discuss briefly the applications of total differentiation in economic analysis.

UNIT-III

- 5. Write notes on the following : 7+8=15
 - (a) Constrained optimization by substitution method
 - (b) Lagrange multiplication method

(Continued)

OR

6. A firm has a budget of ₹ 300 to spend on the three inputs x, y, z whose prices per unit are ₹ 4, ₹ 1 and ₹ 6 respectively. What combination of x, y, z should it employ to maximize output if it faces the production function $Q = 24x^{0.3}y^{0.2}z^{0.3}$?

UNIT-IV

- 7. (a) A firm faces the total revenue schedule $TR = 600q - 0.5q^2$.
 - (i) What is the marginal revenue when q = 100?
 - (ii) What is the total revenue at its maximum?
 - (iii) What price should the firm charge to achieve this maximum total revenue?
 - (b) Find the extreme values of the function $y = x^3 - 9x^2 + 15x + 20$

OR

8. What is profit maximization? The total cost function of a firm is given by $TC = aq^2 + bq + c$, where q is the quantity and

L23/480

(Turn Over)

15

3

2

3

7

(4)

demand function is given by $P = \beta - aq^2$, where P is the price. Find out the profit maximizing output of the firm. 5+10=15

UNIT-V

9. (a) Solve :

$$(i) \quad y(1-x) - x\frac{dy}{dx} = 0$$

(ii)
$$(x - xy^2) dx + (y - x^2 y) dy = 0$$

(b) Solve the differential equation

$$\frac{dy}{dx} + 5y = 10$$

with the initial condition y(0) = 6.

OR

- **10.** (a) Explain the solution of first-order difference equation by iteration method. 7
 - (b) Solve $y_{t+2} + 2y_{t+1} 3y_t = 16$ with initial condition, $y_0 = 10$ when t = 0 and $y_1 = 6$ when t = 1.

* * *

L23—1300/480

Ba/EC2.CC4

5+5=10

5.

8